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BY 
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ABSTRACT 

A natural question to ask in any category ~ is whether a morphism f : X ~ Y in 
cr which is simultaneously mono and epi is actually an equivalence. In this 
paper, we study this question for the category ~ whose objects are pointed, 
path-connected CW-spaces and whose morphisms are pointed homotopy 
classes of maps. We also continue our study of Hopfian and co-Hopfian objects 
of ~f initiated in a recent joint paper with Peter Hilton. 

In this paper ,  we pursue  the themes  discussed in an earl ier ,  similarly titled 

pape r  [4]. 

Our  first aim is to give an i m p r o v e m e n t  of t h e o r e m  3 of [4], as follows. 

THEOREM 1.1. Let e : X--~ X be an epimorphism in ~, the pointed homotopy 

category of path-connected CW-spaces. If  the integral homology groups H,X, 

n _-> 1, are Hopfian groups, then e is a homology equivalence. 

T h e o r e m  3 of [4], which differs f rom T h e o r e m  1.1 in that  it requires  the H,X, 

n _-> 1, to be  finitely genera ted ,  is an immed ia t e  consequence  of T h e o r e m  1.1 

since finitely gene ra t ed  abel ian groups  are cer ta inly Hopf ian .  H o w e v e r ,  there  are 

m a n y  nonfinitely gene ra t ed  abel ian  Hopf ian  groups;  the P- loca l ized  integers Zp, 

as well as the P -ad ic  integers  Z,e, P a family of pr imes,  p rov ide  s imple such 

examples  but  there  are also other ,  m o r e  exotic,  examples .  (See [1] for  a brief  

survey.)  

F r o m  T h e o r e m  1.1, we deduce  (cf. [4, corol lary  4]) 

COROLLARY 1.1. If X is a nilpotent space whose integral homology groups 

H,X, n >= 1, are Hopfian groups, then X is a Hopfian object of ~. 
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The remaining results of [4, w may be similarly improved. We give the 

statements and remark that the proofs in [4] for the corresponding weaker 

versions go over verbatim to the present context. 

THEOREM 1.2. Let f: X ~ Y, g : Y--~ X be epimorphisms in Y( and suppose 

the integral homology groups H,X,  n >= 1, are Hopfian groups. Then the integral 

homology groups H, Y, n >= 1, are Hopfian groups and f and g are homology 

equivalences. 

COROLLARY 1.2. If, in addition, X and Y are nilpotent, then f and g are 

homotopy equivalences. 

It is natural to ask for dualizations of the results stated above, just as in [4, w 

Such dualizations do, in fact, exist but are eminently uninteresting (they are 

practically tautologies). It may be noted that the only finitely generated abelian 

groups which are co-Hopfian are the finite abelian groups so that these trivial 

dualizations do not constitute generalizations of the results of [4, w 

A generalization of corollary 4 of [4] of a different sort from Corollary 1.1 is 

given in [6]. There, it is shown that under suitable finiteness conditions on X, an 

epimorphism e : X ~ X must be a monomorphism in a certain weak sense, but 

one which is nevertheless sufficiently strong to allow the method of proof of [4, 

theorem 7] to yield the conclusion that e is a homotopy equivalence - -  we do not 

elaborate the details here. The following problem then naturally suggests itself: 
given a morphism f : X - *  Y in ~ which is simultaneously mono and epi, find 

general conditions for f to be a homotopy equivalence. By using a variant of the 

techniques of [4], we derive the following 

THEOREM 2.1. Let f : X ~ Y be both a monomorphism and an epimorphism in 

~.  I f  f is a nilpotent map (in the sense of [5, p. 67]) and if either H , f  or ~,f* is 

finitely generated ]:or all n >- 3, then f is a homotopy equivalence. 

Appealing to [5, proposition 2.13, p. 67] we then obtain 

COROLLARY 2.1. Let X and Y be nilpotent spaces of finite type. l f  f : X---> Y is 

both a monomorphism and an epimorphism in ~,  then f is a homotopy equival- 

ence. 

The proof of Theorem 1.1 will be carried out in w that of Theorem 2.1, 

together with discussion of a number of examples comparing Theorem 2.1 with 
the results in [4], in w 

' We may think of Hnf as H.  (cofiber of f)  and It.I" as ~'._~ (fiber of [). 
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I. Proof of Theorem I.I 

The key point in improving [4, theorem 3] so as to obtain Theorem 1.1 is to 

study directly the induced map e , :H,X-- -~  H , X  on integral homology and to 

bypass consideration of the induced maps e ,  : H , ( X ;  Z/p)--> H , ( X ;  Z/p)  on 

mod p homology, p an arbitrary prime. The following general proposition on 

epimorphisms f : X ~ Y in ~ provides the necessary information. 

PROPOSITION 1.1. Let f : X---> Y be an epimorphism in ~(. If, for some m >- O, 
f ,  : HmX -~ Hm Y, then f ,  : H,,+~X-~ H,,+~ Y. 

PROOF. For any k > 0  and any (constant) coefficient group G, we have 

f * : H k ( Y ; G ) ~ , H k ( X ; G ) .  The Universal Coefficient Theorem provides a 

map of short exact sequences 

Ext(HmY, G),---~ Hm+~( Y; G)--~ Hom(Hm+~ Y, G)  

---Jr* J r  
Ext(HmX, G),--~ Hm*'(X; G)--~ Hom(H,,+~X, G). 

It follows that f* :Hom(H,~+IY, G),--~Hom(Hm+tX, G), from which we find 

f .  : H,,+IX-~ Hm+~ Y, as desired. 
In light of [4, proposition 1], Proposition 1.1 yields 

COROLLARY 1.3. Let f : X--~ Y be an epimorphism in ~. If X is r-connected, 

then Y is also r-connected; further, f . : Trr+lX'-~ rr,+~ Y, f .  : H,.~X ~ H,+I Y. 

REMARKS. (1) The hypothesis f .  : HmX ~ H,, Y in Proposition 1.1 is needed 

only to ensure the surjectivity of Ext(H,.Y, G)  r> Ext(H,.X, G). Any other 

hypothesis guaranteeing this, e.g. HmX free abelian, would lead to the same 
conclusion. 

(2) We do not know whether, in general, an epimorphism f:X~--> Y in 

induces a surjection f ,  : H,X:-~ H , Y  for all n => 0. For the 'classical'/~pimorph- 
/ 

isms constructed in [3, theorem 15.11, p. 180], this is always the case; indeed, if f 

is as in loc. cit., then X f : X  X---> X Y is, up to homotopy, a retraction. 

(3) If, as in [4], we work with mod p homology, p a prime, the situation is 

simpler. The absence of the Ext term in the Universal Coefficient Theorem in 

that case leads to the conclusion that any epimorphism f : X ~ Y in :~ induces a 

surjection f ,  : H,  (X; Z/p)--~ H, (Y; Z/p)  for all n => 0. 

We now prove Theorem 1.1. From Proposition 1.1 (or [4, proposition 1]), we 

infer that f ,  : H ~ X ~  H~X, hence, as H~X is Hopfian, that f ,  : H~X ~- H~X. We 
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proceed inductively, assuming that f ,  : HkX ~ HkX, k < n (n >- 2). From Pro- 

position 1.1, we infer that f ,  : H . X ~  H.X  and again, as H.X is Hopfian, that 

f .  : H .X  -~ H.X. This completes the induction step and establishes the theorem. 

2. Proof of Theorem 2.1 

We show inductively that 7r, f = 0 for all n _-> 1. To begin, we invoke [4, 

proposition 1] to infer that f,:Tr~X--r, TrtY, that is, 7r~f=0. As f is a 

monomorphism, we also have f ,:zrtX,--~zr~Y so that f , :~r lX~Tr~Y.  
Abelianizing, we find that f ,  : HIX -~ H~ Y and hence, by Proposition 1.1, that 

f , : H z X - ~ H 2 Y .  It then follows that Hzf  = 0 and therefore, by the relative 

Hurewicz theorem, that ~2f = 0, where ~kf denotes the quotient group of ~rkf 

obtained by killing the action of zr~X. By the nilpotency of f, we infer that 

zr2f = 0 (compare [2]). 

We now assume n _--- 3 and 7rkf = 0, k < n. To prove that 7rnf = 0, we make 

use, as in [4], of homology and homotopy with rood p coefficients, p an arbitrary 

prime. Consider the mod p homotopy-homology ladder 

f* ~r. (X; Z/p),~ ~ (Y; Z/p)--. ~r. ([; z/p)  ~ ~._,(X; z/p).--, ~'o_,(Y; z /p)  

H. (X; Z/p) -~  H. (Y; Z/p)-~-~ H. (/; Z/p)---~ H._,(X; Z /p) -~  H._,(Y; Z/p)  

each of whose terms is well defined since n -> 3. The indicated injections on the 

top row follow from the fact that f is a monomorphism, while the indicated 

surjections on the bottom row follow from the fact that f is an epimorphism (see 

w Remark (3)). The surjectivity of the middle vertical arrow follows from the 

Hurewicz isomorphism ~r,f ~- H . f  together with the isomorphisms 7rn (f; Z/p)  ~- 
7r.f (~ Z /p, H. (f; Z /p ) -~ H. f  ~ Z /p coming from the appropriate Universal 

Coefficient Theorems. A simple diagram chase shows that H~ (f; Z/p)  = 0. Since 

H . f  is finitely generated and p is arbitrary, it then follows that H . f  = 0. By once 

again appealing to the nilpotency of f, we infer that ~'.f = 0, thus completing the 

induction step and with it the proof of the theorem. 

The contrast between Theorem 2.1 and the theorems of [4] is perhaps worthy 

of closer examination. Observe that since, in Theorem 2.1, f : X---~ Y is both a 
monomorphism and an epimorphism, no finiteness condition needs to be 

imposed on X or on Y but rather on f. In [4], f :X- - -~X  is either a 
monomorphism or an epimorphism and a finiteness condition was imposed on X 

(though we have seen, in Theorem 1.1, that a weaker condition would suffice for 
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[4, theorem 3]). The following examples demonstrate that a finiteness condition 

on f alone would, in fact, be insufficient for the theorems of [4]. The first two 

examples are of non-Hopfian objects of ~.  

EXAMeLE 2.1. Let Z be a noncontractible, 1-connected space of finite type 

and V : Z  v Z - o Z  the folding map; plainly, 7 is an epimorphism but not a 

monomorphism. Now let X be the countably infinite wedge Z v Z v . . .  and 

define a map e : X --~ X by 

V v l  

X = ( Z  v Z ) v  X X~ Z v X = X. 

It is easy to see that e is an epimorphism but not a monomorphism and that H,e  

is finitely generated for all n > 1. 

EXAMPLE 2.2. Let f :  U--o V be an epimorphism (as in [3, pp. 180-181])with 

U and V 1-connected of finite type and with some f ,  : ~',U---> ~-~V nonsurjective 

(e.g. the 'collapsing' map S'  x S'  ---o S 2', r > 2, s = 2r). Notice that f cannot be a 

monomorphism (for instance, since f ,  : 7r, U--> ~-,V is noninjective).* Now let 

U, k=<O, 

V, k > 0 ,  ~=-~ 

and l e t  e : X ~  X be the evident 'shift' map corresponding to the scheme 

1 1 l 

�9 " ~ X _ 2 - - - ~ X  i i ~  Xi ~ ~ " "  

Again, e is an epimorphism but not a monomorphism and H,e  is finitely 

generated for all n => 1. 

While the epimorphism e :X----~X in Example 2.1 is, up to homotopy, a 

retraction, so that e .  : ~-,X---~ rr, X for all n ~ 1, the epimorphism e : X----~X in 

Example 2.2 possesses the feature that e .  : ~ X  ~ ~,X is not surjective. We do 

not know whether there is a non-Hopfian object X of ~ such that the homotopy 

groups 7r, X, n _-> 1, are Hopfian but any such X would necessarily admit an 

epimorphism e :X--> X possessing the feature just described. 

Examples2.1 and 2.2 may be readily dualized to yield (1-connected) non-co- 

Hopfian objects of gs 

EXAMPLE 2.1". Let Z be a noncontractible, 1-connected space of finite type 

and A : Z ~ Z x Z the diagonal map; plainly, A is a monomorphism but not an 

Or by Corollary 2.1! 
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epimorphism. Now let X be the countably infinite product Z x Z x . . .  and 

define a map m :X--*X by 

Axl 

X = Z •  ~ ( Z • 2 1 5  

It is easy to see that m is a monomorphism but not an epimorphism and that 7r.m 

is finitely generated for all n => 1. 

EXAMPLE 2.2*. Let f :  U--~ V be a monomorphism with U and V 1- 

connected of finite type and with some f ,  :H,U---~H~V noninjective (e.g. the 

Hopf map $3--* S 2, s = 3). As in Example 2.2, f cannot be an epimorphism. Now 

let 

U, k_-<0, 
X k =  X =  Xk 

V, k > 0 ,  k=-~ 

and let m : X ~  X be the evident 'shift' map corresponding to the scheme 

1 1 f ) 1 I u  
" ' "  ) X - 2 " " ~  X - l - ' - " ~  X o  X I - ' - ~  X2  "" X 3  )"  "" 

Again, rn is a monomorphism but not an epimorphism and 7r, m is finitely 

generated for all n => 1. 

These examples fortify the impression that the finiteness hypothesis in 

Theorem 2.1 is rather mild. In spite of this, it should be noted that the hypothesis 

that f be a monomorphism and an epimorphism is used sparingly; all that is 

needed in this connection is that f should induce f , :rr~X~TrlY,  
f,:H2X---~H2Y, f , :H , (X:Z /p) - - -~H, (Y;Z /p)  and f,:zr,(X;Z/p),-.-~ 
rro(Y;Z/p), n >-_3, p an arbitrary prime. Now, if X is a 2-connected space of 

finite type, Y -- X" and f = c : X---~ X" is profinite completion, the conditions just 

listed are met (see [7]). Of course, unless all the homotopy groups of X happen 

to be finite groups, H,c is not finitely generated for all n -> 1 (and similarly for 

rr, c) and the conclusion of Theorem 2.1 fails for c. It is thus legitimate to wonder 

whether a more substantial utilization of the monomorphism-epimorphism 

hypothesis would allow relaxation, or even removal, of the finiteness hypothesis 

in Theorem 2.1. 

To conclude, we remark that it seems certain that some sort of fundamental 

group hypothesis in Theorem 2.1 (as well as in [4, corollary 4]) is critical. 

However,  it also seems quite difficult to construct appropriate counterexamples. 

Further study in this direction is undoubtedly warranted. 
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